首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1644篇
  免费   182篇
  国内免费   485篇
安全科学   30篇
废物处理   16篇
环保管理   183篇
综合类   751篇
基础理论   1022篇
污染及防治   128篇
评价与监测   61篇
社会与环境   116篇
灾害及防治   4篇
  2024年   3篇
  2023年   40篇
  2022年   66篇
  2021年   68篇
  2020年   88篇
  2019年   69篇
  2018年   60篇
  2017年   82篇
  2016年   83篇
  2015年   98篇
  2014年   91篇
  2013年   130篇
  2012年   123篇
  2011年   160篇
  2010年   116篇
  2009年   119篇
  2008年   121篇
  2007年   148篇
  2006年   100篇
  2005年   110篇
  2004年   77篇
  2003年   61篇
  2002年   43篇
  2001年   31篇
  2000年   36篇
  1999年   25篇
  1998年   23篇
  1997年   19篇
  1996年   25篇
  1995年   16篇
  1994年   14篇
  1993年   13篇
  1992年   12篇
  1991年   10篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2311条查询结果,搜索用时 31 毫秒
991.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   
992.
Colonial burrowing herbivores can modify vegetation structure, create belowground refugia, and generate landscape heterogeneity, thereby affecting the distribution and abundance of associated species. Black‐tailed prairie dogs (Cynomys ludovicianus) are such a species, and they may strongly affect the abundance and composition of grassland bird communities. We examined how prairie dog colonies in the North American Great Plains affect bird species and community composition. Areas occupied by prairie dogs, characterized by low percent cover of grass, high percent cover of bare soil, and low vegetation height and density, supported a breeding bird community that differed substantially from surrounding areas that lacked prairie dogs. Bird communities on colony sites had significantly greater densities of large‐bodied carnivores (Burrowing Owls [Athene cunicularia], Mountain Plovers, [Charadrius montanus], and Killdeer [Charadrius vociferus]) and omnivores consisting of Horned Larks (Eremophila alpestris) and McCown's Longspurs (Rhynchophanes mccownii) than bird communities off colony sites. Bird communities off colony sites were dominated by small‐bodied insectivorous sparrows (Ammodramus spp.) and omnivorous Lark Buntings (Calamospiza melanocorys), Vesper Sparrows (Pooecetes gramineus), and Lark Sparrows (Chondestes grammacus). Densities of 3 species of conservation concern and 1 game species were significantly higher on colony sites than off colony sites, and the strength of prairie dog effects was consistent across the northern Great Plains. Vegetation modification by prairie dogs sustains a diverse suite of bird species in these grasslands. Collectively, our findings and those from previous studies show that areas in the North American Great Plains with prairie dog colonies support higher densities of at least 9 vertebrate species than sites without colonies. Prairie dogs affect habitat for these species through multiple pathways, including creation of belowground refugia, supply of prey for specialized predators, modification of vegetation structure within colonies, and increased landscape heterogeneity. Asociaciones de Comunidades de Aves de Pastizales con Perros de la Pradera en la Gran Llanura de Norte América  相似文献   
993.
Rewilding is increasingly recognized as a conservation tool but is often context specific, which inhibits broad application. Rewilding in Australia seeks to enhance ecosystem function and promote self-sustaining ecosystems. An absence of large-bodied native herbivores means trophic rewilding in mainland Australia has focused on the restoration of functions provided by apex predators and small mammals. Because of the pervasive influence of introduced mesopredators, predator-proof fences, and establishment of populations on predator-free islands are common rewilding approaches. This sets Australian rewilding apart from most jurisdictions and provides globally relevant insights but presents challenges to restoring function to broader landscapes. Passive rewilding is of limited utility in arid zones. Although increasing habitat extent and quality in mesic coastal areas may work, it will likely be necessary to undertake active management. Because much of Australia's population is in urban areas, rewilding efforts must include urban areas to maximize effectiveness. Thus rewilding is not synonymous with wilderness and can occur over multiple scales. Rewilding efforts must recognize human effects on other species and benefit both nature and humans. Rewilding in Australia requires development of a shared vision and strategy and proof-of-concept projects to demonstrate the benefits. The repackaging of existing conservation activities as rewilding may confuse and undermine the success of rewilding programs and should be avoided. As elsewhere, rewilding in Australia should be viewed as an important conservation tool.  相似文献   
994.
采用离线分析法和在线分析法同步监测了武汉市PM_(2.5)中有机碳(OC)、元素碳(EC)和总碳(TC)的浓度,分析了2种方法的差别。结果表明,离线分析法与在线分析法对TC的测定结果具有很好的可比性,2种方法对TC的测定结果显著相关(r=0.970 9)。离线分析法得到的OC浓度普遍高于在线分析法,前者为后者的1.12倍,造成OC结果差异的主要原因可能是采样系统的差异。2种方法对EC测定的相关性较低(r=0.763 0),且2种方法对EC测定的精密度(相对偏差为13.14%)也不如其对TC和OC测定的精密度(相对偏差分别为3.42%和5.95%),造成EC结果差异的原因较复杂。离线分析法测得的OC/EC值明显高于在线分析法,鉴于OC/EC值在颗粒物源解析研究中具有重要意义,需要规范OC/EC分析方法。  相似文献   
995.
Knowing how much biodiversity is captured by protected areas (PAs) is important to meeting country commitments to international conservation agreements, such as the Convention on Biological Diversity, and analyzing gaps in species coverage by PAs contributes greatly to improved locating of new PAs and conservation of species. Regardless of their importance, global gap analyses have been conducted only for a few taxonomic groups (e.g., mangroves, corals, amphibians, birds, mammals). We conducted the first global gap analysis for a complete specious plant group, the highly threatened Cactaceae. Using geographic distribution data of 1438 cactus species, we assessed how well the current PA network represents them. We also systematically identified priority areas for conservation of cactus species that met and failed to meet conservation targets accounting for their conservation status. There were 261 species with no coverage by PAs (gap species). A greater percentage of cacti species (18%) lacked protection than mammals (9.7%) and birds (5.6%), and also a greater percentage of threatened cacti species (32%) were outside protected areas than amphibians (26.5%), birds (19.9%), or mammals (16%). The top 17% of the landscape that best captured covered species represented on average 52.9% of species ranges. The priority areas for gap species and the unprotected portion of the ranges of species that only partially met their conservation target (i.e., partial gap) captured on average 75.2% of their ranges, of which 100 were threatened gap species. These findings and knowledge of the threats affecting species provide information that can be used to improve planning for cacti conservation and highlight the importance of assessing the representation of major groups, such as plants, in PAs to determining the performance of the current PA network.  相似文献   
996.
Refugia-based conservation offers long-term effectiveness and minimize uncertainty on strategies for climate change adaptation. We used distribution modelling to identify climate change refugia for 617 terrestrial mammals and to quantify the role of protected areas (PAs) in providing refugia across South America. To do so, we compared species potential distribution across different scenarios of climate change, highlighting those regions likely to retain suitable climatic conditions by year 2090, and explored the proportion of refugia inside PAs. Moist tropical forests in high-elevation areas with complex topography concentrated the highest local diversity of species refugia, although regionally important refugia centers occurred elsewhere. Andean–Amazon forests contained climate change refugia for more than half of the continental species’ pool and for up to 87 species locally (17 × 17 km2 grid cell). The highlands of the southern Atlantic Forest also included megadiverse refugia for up to 76 species per cell. Almost half of the species that may find refugia in the Atlantic Forest will do so in a single region—the Serra do Mar and Serra do Espinhaço. Most of the refugia we identified, however, were not in PAs, which may contain <6% of the total area of climate change refugia, leaving 129–237 species with no refugia inside the territorial limits of PAs of any kind. Our results reveal a dismal scenario for the level of refugia protection in some of the most biodiverse regions of the world. Nonetheless, because refugia tend to be in high-elevation, topographically complex, and remote areas, with lower anthropogenic pressure, formally protecting them may require a comparatively modest investment.  相似文献   
997.
Human‐induced habitat changes may lead to the breakdown of reproductive barriers between distantly related species. This phenomenon may result in fertile first‐generation hybrids (F1) that exclude the genome of one parental species during gametogenesis, thus disabling introgression. The species extinction risk associated with hybridization with genome exclusion is largely underappreciated because the phenomenon produces only F1 hybrid phenotype, leading to the misconception that hybrids are sterile and potentially of minor conservation concern. We used a simulation model that integrates the main genetic, demographic, and ecological processes to examine the dynamics of hybridization with genome exclusion. We showed that this mode of hybridization may lead to extremely rapid extinction when the process of genome exclusion is unbalanced between the interbreeding species and when the hybridization rate is not negligible. The coexistence of parental species was possible in some cases of asymmetrical genome exclusion, but show this equilibrium was highly vulnerable to environmental variation. Expanding the exclusive habitat of the species at risk allowed its persistence. Our results highlight the extent of possible extinction risk due to hybridization with genome exclusion and suggest habitat management as a promising conservation strategy. In anticipation of serious threats to biodiversity due to hybridization with genome exclusion, we recommend a detailed assessment of the reproductive status of hybrids in conservation programs. We suggest such assessments include the inspection of genetic content in hybrid gametes.  相似文献   
998.
Seabirds have been particularly affected by invasive non-native species, which has led to the implementation of numerous eradication campaigns for the conservation of these keystone and highly vulnerable species. Although the benefits of eradication of invasive non-native species for seabird conservation have been demonstrated, the recovery kinetics of different seabird populations on islands after eradication remains poorly evaluated. We conducted long-term monitoring of the number of breeding pairs of seven seabird species on a small atoll, Surprise Island, New Caledonia (southwestern tropical Pacific). Marine avifauna of the island were surveyed yearly 4 years before to 4 years after rodent eradication (conducted in 2005), and we conducted multiple one-time surveys from ∼10 years before and ∼15 years after eradication. We sought to determine how different seabird species responded to the eradication of invasive rodents in an insular environment. Three species responded positively (two- to 10-fold increase in population size) to eradication with differences in lag time and sensitivity. The number of breeding pairs increased (effect sizes = 0.49–0.95 and 0.35–0.52) for two species over 4 years post-eradication due to immigration. One species had a longer (at least 5 years) response time than all others; breeding pairs increased for over 10 years after eradication. Long-term sampling was necessary to observe the responses of the seabird populations on the island because of the delayed response of a species to eradication not visible in the first years after eradication. Our results confirmed the positive effects of eradication of invasive non-native species on seabirds and emphasize the importance of mid- and long-term pre- and posteradication surveys to decipher the mechanisms of seabird recovery and confirm the benefits of eradication for conservation purposes.  相似文献   
999.
Understanding how habitat fragmentation affects individual species is complicated by challenges associated with quantifying species-specific habitat and spatial variability in fragmentation effects within a species’ range. We aggregated a 29-year breeding survey data set for the endangered marbled murrelet (Brachyramphus marmoratus) from >42,000 forest sites throughout the Pacific Northwest (Oregon, Washington, and northern California) of the United States. We built a species distribution model (SDM) in which occupied sites were linked with Landsat imagery to quantify murrelet-specific habitat and then used occupancy models to test the hypotheses that fragmentation negatively affects murrelet breeding distribution and that these effects are amplified with distance from the marine foraging habitat toward the edge of the species’ nesting range. Murrelet habitat declined in the Pacific Northwest by 20% since 1988, whereas the proportion of habitat comprising edges increased by 17%, indicating increased fragmentation. Furthermore, fragmentation of murrelet habitat at landscape scales (within 2 km of survey stations) negatively affected occupancy of potential breeding sites, and these effects were amplified near the range edge. On the coast, the odds of occupancy decreased by 37% (95% confidence interval [CI] –54 to 12) for each 10% increase in edge habitat (i.e., fragmentation), but at the range edge (88 km inland) these odds decreased by 99% (95% CI 98 to 99). Conversely, odds of murrelet occupancy increased by 31% (95% CI 14 to 52) for each 10% increase in local edge habitat (within 100 m of survey stations). Avoidance of fragmentation at broad scales but use of locally fragmented habitat with reduced quality may help explain the lack of murrelet population recovery. Further, our results emphasize that fragmentation effects can be nuanced, scale dependent, and geographically variable. Awareness of these nuances is critical for developing landscape-level conservation strategies for species experiencing broad-scale habitat loss and fragmentation.  相似文献   
1000.
Many species are restricted to a marginal or suboptimal fraction of their historical range due to anthropogenic impacts, making it hard to interpret their ecological preferences from modern-day data alone. However, inferring past ecological states is limited by the availability of robust data and biases in historical archives, posing a challenge for policy makers . To highlight how historical records can be used to understand the ecological requirements of threatened species and inform conservation, we investigated sperm whale (Physeter macrocephalus) distribution in the Western Indian Ocean. We assessed differences in information content and habitat suitability predictions based on whale occurrence data from Yankee whaling logs (1792–1912) and from modern cetacean surveys (1995–2020). We built maximum entropy habitat suitability models containing static (bathymetry-derived) variables to compare models comprising historical-only and modern-only data. Using both historical and modern habitat suitability predictions  we assessed marine protected area (MPA) placement by contrasting suitability in- and outside MPAs. The historical model predicted high habitat suitability in shelf and coastal regions near continents and islands, whereas the modern model predicted a less coastal distribution with high habitat suitability more restricted to areas of steep topography. The proportion of high habitat suitability inside versus outside MPAs was higher when applying the historical predictions than the modern predictions, suggesting that different marine spatial planning optimums can be reached from either data sources. Moreover, differences in relative habitat suitability predictions between eras were consistent with the historical depletion of sperm whales from coastal regions, which were easily accessed and targeted by whalers, resulting in a modern distribution limited more to steep continental margins and remote oceanic ridges. The use of historical data can provide important new insights and, through cautious interpretation, inform conservation planning and policy, for example, by identifying refugee species and regions of anticipated population recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号